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1. Introduction

According to the development of computer and imaging 
devices, the new measuring techniques based on flow visu-
alization have been developed and utilized in many different 
fields. The typical examples are so-called PIV, i.e. particle 
image velocimetry [1, 2], and PTV, i.e. particle tracking velo-
cimetry [3]. The principal setup of PIV utilizes one high-
resolution camera and a laser light sheet, which illuminates 
the tracer particles suspended in the fluid flow. By calculating 
the displacement of particles, the 2D distribution of the 2D 
velocities can be obtained. By implementing multiple cameras 

and the careful calibration of the 3D coordinates, 2D distribu-
tion of all the three velocity components can be measured by 
Stereo PIV [4] and the 3D measurement of the 3D velocities 
can also be achieved by so-called Tomographic PIV [5].

In order to understand the details of the flow field in the 
micro- and nano-fluidic devices, it is necessary to measure the 
3D velocities under a microscope. The use of confocal PIV  
[6, 7] is a challenge, but it is not capable of depth-wise 
tracking and is very expensive. Thus, the development of a 
new measuring technique for the 3D velocities by a single 
camera observation is strongly needed. One solution is the 
use of holography [8]. The principle of the holography was 
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invented in the 1960s [9, 10] and the digital reconstruction of 
the hologram [11, 12] together with the use of CCD camera [13] 
has made digital holography [14] possible. PIV was originally 
invented as a film-based technique [15] and then integrated to a 
digital method [16]. At the same time, it is well known that the 
accuracy in the depth direction is very poor for the commonly 
used in-line holography because of the contamination by the 
zero order beam. In order to overcome this shortcoming, the use 
of two sets of orthogonal holography [17] has been proposed, 
but it cannot be applied to the measurement under microscopy. 
Recently, several new methods to shorten the depth-of-focus 
have been invented [18–21]. On the other hand, many kinds 
of the phase-shifting [22] are the hope to accurately calculate 
the particle position. Yet, the spatial phase-shifting needs 3 or 
4 cameras whose CCD pixels are carefully aligned. Otherwise, 
2  ×  2 phase shifting array device [23] or tilting technique [24] 
has to be used even though these method sacrifices spatial reso-
lution. Whereas the temporal phase-shifting cannot be applied to 
the moving objects. As for the holographic measurement under 
microscopy, many studies have been conducted [22, 25] and the 
PIV measurements have also been done extensively [26–28]. 
But, it is not easy to apply the phase-shifting to the micro-
scopic PIV. Notwithstanding, the time tracing algorithm for the 
densely distributed moving particles does not have great pro-
gress from the time- consuming cross correlation method [29]  
or the traditional PTV algorithm [30, 31].

Presently, the Doppler phase-shifting holography [32] 
is used for the 3D velocity measurement of an object. This 
method extracts the signal of a fixed frequency caused by the 
Doppler beat between the object light and the reference light. 
The frequency of the beat is determined by the velocity dif-
ference between the object light and the reference light. This 
implies that the velocity of an object can be calculated by the 
Doppler frequency. In this study, the shapes and its 3D veloci-
ties have been measured accurately for a moving Japanese  
5 yen coin at different angles.

2. Fundamental techniques

Digital holography observes the interference of the reference 
light and the observed light scattered on the surface of an 
object. Then, the 3D shape of an object can be reproduced by 
calculating the diffraction by a computer. But, in the commonly 
used in-line holography, the diffraction is contaminated by the 
0th order object light and the accuracy in the depth direction is 
deteriorated. In order to improve this drawback, several phase-
shifting methods have been proposed, which can calculate only 
the 1st order diffraction and thus the acc uracy in the longitu-
dinal direction is guaranteed. Presently, Doppler phase-shifting 
holography is chosen because it is capable of unsteady mea-
surement and does not need multiple cameras. Figure 1 shows 
the experimental setup of a Doppler phase-shifting holography.

The complex intensities of the object light and of the refer-
ence light are expressed as follows:

( ) ( ) { [ ( ) ( ) ] }φ ω= −E x y t a x y x y t t, , , exp i ,O O O O (1)
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where aO and aR represent the amplitudes, φO and φR are the 
phase angles and ωO and ωR are the angular velocities of the 
object light and the reference light. If the object travels at 
velocity υO and the reference mirror at υR, the angular veloci-
ties are shifted by the Doppler effect of light as follows:
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where ω0 is the angular frequency of the light source and c is 
the speed of light. Consequently, the superposition intensity 
of the holograms detected by the image sensor is expressed 
as follows:
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The Fourier transformation of equation (5) in the time domain is
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If the angular frequency of the object light is higher than that 
of the reference light, the  +1st order diffraction is obtained 
in the second term. If the spectrum of each term can be split, 
the phase difference Δφ(x, y) between the object light and the 
reference light is easily obtained.

The discrete Fourier transformation of the image recorded 
by the image sensor of the finite size is obtained as:
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If the  +1st order diffraction spectrum of a fixed frequency 
is extracted from equation (8), the complex amplitude of an 
object can be calculated very accurately.

3. 3D velocity measurement

Originally, the Doppler phase-shifting was invented to mea-
sure the object profile accurately [32]. Yet, as the beat fre-
quency of the Doppler beat is proportional to the velocity 
difference between the object light and the reference light, 
the longitudinal velocity of an object can be measured by the 
beat frequency of the Doppler beat. In order to prove this, 
Ninomiya et al [33] measured the longitudinal velocity of a 
concave mirror travelling at a constant speed by a Doppler 
phase-shifting holography.
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An Ar-ion laser of 514 nm is used as the light source, 
which is introduced to a pinhole and expanded by the spatial 
filter of f  =  5 mm and then made parallel by a collimator lens 
of f  =  100 mm. A concave mirror of the radius of curvature 
R  =  30 m is used as a target object in figure 1 and traversed 
at υO  =  100 µm s−1 by the voice coil motor. The images of 
interference patterns are captured on a high-speed camera of 
1024  ×  1024 pixels at frame rate of 2000 fps and shutter speed 
of 1/70 000 s. The size of each pixel is 10  ×  10 µm. The time 
series of intensity fluctuations of the central pixel of 512 con-
secutive images are transformed into Fourier domain through 
DFT to obtain its spectrum. It should be noted that as any part 

of the concave mirror is travelling at the same speed, choice 
of any pixel may give the similar spectrum. A clear peak of 
the Doppler beat is found at 386.7 Hz, which corresponds to 
υO  =  99.4 µm s−1 with the error of 0.6% to the given longi-
tudinal velocity [33]. Thus, it has been proved that a Doppler 
phase-shifting holography can be used for the measurement 
of the longitudinal velocity. Moreover, the surface profile of 
the concave mirror was reproduced from the phase data of the 
digital holography and the rms error to the R  =  30 mm profile 
is only 3.27 nm [33]. This is the evidence that Doppler phase-
shifting technique is capable of measuring the 3D position and 
the longitudinal velocity simultaneously.

Figure 1. Experimental setup for Doppler phase-shifting digital holography.

Figure 2. Experimental setup for velocity measurement.

Meas. Sci. Technol. 27 (2016) 104004
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As the fundamental measurement technique has been 
proved to work in the previous study [33], the actual meas-
urement of the 3D velocity is carried out by the experimental 
setup shown in figure  2. The Japanese 5 yen coin, whose 
diameter is about 22 mm, is used as a target object and is tra-
versed at a constant speed at a specific angle. As the reflection 
from the 5 yen coin is weaker than the reference light, the 70% 
ND filter is placed in front of the reference mirror in order to 
match the light intensities.

The images are recorded by a high-speed camera of 
1024  ×  1024 pixels at frame rate of 2000 fps. The angle 
of the moving stage is set at θ  =  76 degree and it travels at 

υO  =  413.4 µm s−1, which corresponds to υOz  =  100.0 µm s−1 
and υOx  =  400.0 µm s−1. Figure 3 shows the measured spec-
trum obtained from 512 frames at two different timings of the 
traverse. In order to obtain the beat frequency, the time series 
of intensity fluctuation is needed. Presently, the time trace of 
the central pixel intensity for 512 frames is used. Moreover, 
for the later PIV measurement, two sets of 512 frames, i.e. 
400–911 frames and 2400–2911 frames, are used whose time 
interval between sets is 1.000 s. Both of them have strong 
peaks at (a) 396.2 Hz and (b) 399.7 Hz, which correspond 
to the longitudinal velocities of (a) υOz  =  101.8 µm s−1 and  
(b) υOz  =  102.7 µm s−1 by equation (3), and both agree well 

Figure 3. Beat frequency spectrum obtained from 512 images. (a) 400–911 frame. (b) 2400–2911 frame.

Figure 4. Displacement of Japanese 5 yen coin measured by 2D PIV. (Left: superimposed image of two sets together with PIV settings, 
right top: magnified image, right bottom: measured velocity vectors.)

Meas. Sci. Technol. 27 (2016) 104004
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with the given velocity. It should be noted that the choice of 
a pixel and a starting frame for the spectrum extraction affect 
the beat frequency only slightly.

By integrating over these 512 frames, an interference image 
that contains only the frequency component of this Doppler 
beat frequency can be extracted. By using this interference 
image, which is free from the zero order beam, an accurate 
reconstruction of an object can be done. Figure 4 shows the 
reconstructed images of the 5 yen coin at two different tim-
ings. The reconstruction is done manually by searching the 
appropriate depth position where the rms intensity takes its 
maximum. The former image is colored by red and the latter 
by blue. It is obvious that the 5 yen coin travels in the x direc-
tion and its movement is calculated by the correlation method 
commonly used in the PIV algorithm. The expanded plot of 
the velocity vectors shows the transverse movement at a fixed 
speed. By the combination of the longitudinal velocity meas-
urement by the Doppler frequency and the transverse velocity 
measurement by PIV method, 3D velocity measurement of an 
object by a single camera has be achieved.

But as the 5 yen coin is also moving in the transverse 
direction, the time series intensity used to obtain the spectrum 
shown in figure  3 is not an exact trace of the light emitted 
from a certain point of the 5 yen coin. Nevertheless, as the 
transverse movement of the 5 yen coin has been measured by 
PIV as shown in figure 4, the temporal movement of a fixed 
point can be interpolated from the results obtained in figure 4. 
Presently, each frame of the original interference image is 
shifted back by equation (9) so that it looks as though there is 
no transverse movement in order to trace the exact time series 
of the light emitted from a fixed point of the 5 yen coin.
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Then the beat frequencies obtained from the spectrum of the 
shifted images are (a) 391.2 Hz and (b) 392.6 Hz, which cor-
respond to the longitudinal velocity of (a) υOz  =  100.5 µm s−1 
and (b) υOz  =  100.9 µm s−1. It is quite obvious that the image 
shifting improves the measurement accuracy of the longitu-
dinal velocity. Figure 5 shows the reproduced images of the 
5 yen coin with the image shifting. It can clearly be seen that 
the shape of the 5 yen coin is more obvious with the use of 
the shifted images and it is quite a matter of course but the 
transverse movements are hardly seen in figure 5, which is an 
evidence that the image shifting has been done properly.

Table 1 summarizes the result of the 3D velocity meas-
urement by a Doppler phase-shifting holography. The voice 
coil motor used for the moving stage has a positioning acc-
uracy of 0.05 µm and the nominal velocity fluctuation is less 
than 1%, which has been proved by a high-speed camera to 
be much smaller. The vertical velocity is almost zero as the 
traversing stage moves in the horizontal direction. Now it can 

Figure 5. Displacement of Japanese 5 yen coin measured by 2D PIV with shifted images. (Left: superimposed image of two sets together 
with PIV settings, right top: magnified image, right bottom: measured velocity vectors.)

Table 1. Velocities of Japanese 5 yen coin (76 degree).

υOz υOx

Stage velocity (µm s−1) 100.0 400.0

Measured velocity (µm s−1) 100.7 401.2

Meas. Sci. Technol. 27 (2016) 104004
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be concluded that this technique is capable of 3D velocity 
measurement.

Finally, similar measurements have been repeated with dif-
ferent angles of the traverse. The results are shown in figure 6 
and it is quite obvious that this technique is valid for different 
angles of the traverse with the error less than 2%.

4. Conclusions

This paper presents a newly developed 3D velocity measuring 
technique based on a Doppler phase-shifting holography.  
It can measure the 3D velocity of an object by the single 
camera observation very accurately with the error less than 
2% for any angle of traverse.

This method envisions its application to particle motion 
detection in the micro- or nano-devices and thus the 3D 
particle velocities can be measured simultaneously by a 
single camera. As this method does not need the depth-wise 
tracking, it can easily be coupled with conventional 2D PIV. 
Nevertheless, the application of this technique to the particle 
flows, the limit of particle seeding density and the depth of 
field that this method can be applied remain to be proved by 
a future study. But, it will contribute to the development of 
micro- and nano-fluidic devices.
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